Refinement

Refinement on F
$R=0.0208$
$w R=0.0165$
$S=1.577$
807 reflections
94 parameters
All H-atom parameters refined
$w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$
$\left.+\left(0.003 F_{o}^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.007$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x		y	z

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.4101(9)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.123(4)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.021(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.461(6)$
$\mathrm{Ru}(1)-\mathrm{N}(2)$	$2.020(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.466(5)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.125(4)$		
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$90.39(8)$	$\mathrm{Ru}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$171.7(3)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$90.92(8)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$178.7(5)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$93.7(1)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$178.1(4)$
$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$172.7(3)$		

The θ-scan width was $(0.80+1.3 \tan \theta)^{\circ}$ at a speed of $4.0^{\circ} \mathrm{min}^{-1}$ (in ω). The weak reflections were rescanned a maximum of four times and the counts accumulated to ensure good counting statistics. Stationary background counts were made on each side of the reflection with a $2: 1$ ratio of peak-to-background counting time. H atoms were refined isotropically. The structure was solved using heavy-atom Patterson methods (Beurskens et al., 1992) and expanded using Fourier techniques (Beurskens et al., 1992).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

We wish to thank The Royal Society (UK) Australian Scheme for the award of a Postdoctoral Fellowship to MB, and Dr Graham Heath and Professor Martin Bennett for stimulating discussions and encouragement.

[^0]
References

Bennett, M. A., Huang, T. N., Matheson, T. W. \& Smith, A. K. (1982). Inorg. Synth. 21, 74-78.

Beurskens. P. T., Admiraal, G., Beurskens, G.. Bosman, W. P., GarciaGranda, S.. Gould. R. O.. Smits, J. M. M. \& Smykalla. C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Duff, C. M. \& Heath, G. A. (1991a). Inorg. Chem. 30. 2528-2535.
Duff. C. M. \& Heath, G. A. (1991b). J. Chem. Soc. Dalton Trans. pp. 2401-2411.
Endres, H. (1987). Comprehensive Coordination Chemistr:, Vol. 2, edited by G. Wilkinson, R. D. Gillard \& J. A. McCleverty, pp. 261-267. Oxford: Pergamon Press.
Gheller, S. F., Heath, G. A. \& Hockless, D. C. R. (1995). Acta Cryst. C51, 1805-1807.
Gilbert, J. D., Rose, D. \& Wilkinson, G. (1970). J. Chem. Soc. A, pp. 2765-2769.
Johnson, B. F. G., Lewis, J. \& Ryder, I. E. (1977). J. Chem. Soc. Dalton Trans. pp. 719-724.
Newton, W. E. \& Searles, J. E. (1973). Inorg. Chim. Acta, 7, 349-352.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC. 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
North, A. C. T.. Phillips, D. C. \& Mathews, F. S. (1968). Acta Crrst. A24. 351-359.

Acta Cryst. (1996). C52, 1106-1110

Two Monomeric Ruthenium Complexes Containing Bidentate Bis(diphenylphosphino) Ligands

Wayne H. Pearson, ${ }^{\text {a }}$ Joyce E. Shade, ${ }^{\text {a }}$ James E. Brown ${ }^{a}$ and Thomas E. Bitterwolf ${ }^{b}$
"Department of Chemistr?: United States Naval Academy; Annapolis, Marvland 21402-5026. USA. and "Department of Chemistrn; University of Idaho, Moscon: Idaho 83843. USA. E-mail: pearson@gold.nadn.navv:mil

(Received 6 Januarv 1995; accepted 25 August 1995)

Abstract

The crystal structures of chloro (η^{5}-cyclopentadienyl)-[methylenebis(diphenylphosphine- P)]ruthenium-chloroform ($1 / 1$), $\left[\operatorname{RuCl}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)\right] . \mathrm{CHCl}_{3}$, (A), and chloro(η^{5}-cyclopentadienyl) [1,2-ethanediylbis(diphenyl-phosphine- P)]ruthenium-chloroform (1/1), $\quad\left[\mathrm{RuCl}\left(\mathrm{C}_{5}-\right.\right.$ $\left.\mathrm{H}_{5}\right)\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right) \mathrm{J} . \mathrm{CHCl}_{3},(B)$, are reported. Both complexes contain a central ring structure in which a pair of P atoms, linked by a $-\mathrm{CH}_{2}-$ [in (A)] or a $-\mathrm{C}_{2} \mathrm{H}_{4}-$ [in (B)] group, are bonded to a central Ru atom. The P -$\mathrm{Ru}-\mathrm{P}$ bond angle undergoes expansion from 72.07 (2) ${ }^{\circ}$ in (A) to $83.48(2)^{\circ}$ in (B). The bond distances around the Ru center are compared with values reported for

similar compounds. Both structures include a chloroform solvent molecule in addition to the ruthenium complex. The chloroform molecule in (A) was found to be disordered.

Comment

Ruthenium forms a variety of classical coordination and organometallic compounds. The two compounds reported here, (A) and (B), were initially isolated by evaporation of chloroform/pentane solutions containing by-products of the photolysis reactions of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ru}_{2}(\mu-\mathrm{CO})_{4}$ with dppm [bis(diphenylphosphino)methane] or dppe [1,2-bis(diphenylphosphino)ethane]. Both compounds were then independently prepared through the reaction of (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ with dppm or dppe in refluxing benzene following the procedure of Ashby, Bruce, Tomkins \& Wallis (1979). Proton NMR spectra from the latter preparations were consistent with those of the photolysis products.

(A)

(B)

The structure of (B) with deuterated chloroform as a solvent has been reported previously (Suravajjala \& Porter, 1993). A major difference between the earlier structure and the redetermination described here is that the phenyl rings were treated as rigid groups in the former, but were not constrained in this manner in this work. While the essential features of the two structures are the same, the e.s.d.'s for the structure described here are significantly lower than those of the previously reported structure.

The $\mathrm{Ru}-\mathrm{P}$ distances in both compounds [2.2724 (5) and 2.2833 (6) \AA in (A), 2.2688 (7) and 2.2863 (7) \AA in (B)] are consistent with $\mathrm{Ru}-\mathrm{P}$ distances in similar compounds. Ru-P distances range from 2.224 to $2.337 \AA$ with an average value of $2.282 \AA$ in a series of compounds containing the $\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cp}$ fragment with a variety of phosphino ligands (Bruce, Wong, Skelton \& White, 1981; de Klerk-Engels, Groen, Vrieze, Möckel, Lindner \& Goubitz, 1992; Joslin, Mague \& Roundhill, 1991; Mague \& Johnson, 1990; Morandini, Consiglio, Straub, Ciani \& Sironi, 1983). The central hydrocarbon bridge between the P atoms in both phosphino ligands appears to decrease the steric interaction between phenyl rings so that the $\mathrm{Ru}-\mathrm{P}$ distances in (A) and (B) are closer to those found in the analogous bis(trimethylphosphino) complex ($\langle\mathrm{Ru}-\mathrm{P}\rangle 2.275 \AA$) than in
the bis(triphenylphosphino) complex ($\langle\mathrm{Ru}-\mathrm{P}\rangle 2.336 \AA$) (Bruce, Wong, Skelton \& White, 1981). The bond lengths are in quite good agreement with those in the diphenylphosphinopropane complex $(\langle\mathrm{Ru}-\mathrm{P}\rangle 2.277 \AA$) (Morandini, Consiglio, Straub, Ciani \& Sironi, 1983). The difference between the two $\mathrm{Ru}-\mathrm{P}$ distances in compounds (A) and (B) most likely results from intermolecular interactions between the chloroform solvent and the phenyl groups on P1, as the solvent molecule is closely associated with these groups in both structures [as can be seen in Fig. 3 for (B)]. The corresponding $\mathrm{Ru}-\mathrm{P}$ distances are quite similar in both compounds. The larger bite of the dppe ligand is accommodated by a larger $\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ angle in $(B)\left[83.48(2)^{\circ}\right]$ compared to that in $(A)\left[72.07(2)^{\circ}\right]$.

Unequal $\mathrm{Ru}-\mathrm{C}$ distances are found in both (A) and (B), similar to those in chloro (η^{5}-cyclopentadienyl)bis(trimethylphosphine)ruthenium [2.15 (2)-2.23 (2) A ; Bruce, Wong, Skelton \& White, 1981], chloro η^{5} -cyclopentadienyl)bis(diphenylphosphinopropane)ruthenium [2.159 (9)-2.230 (10) A; Morandini, Consiglio, Straub, Ciani \& Sironi, 1983] and chloro (η^{5}-cyclopentadienyl)[bis(dimethoxyphosphino)methylamine]ruthenium [2.183 (2)-2.254 (2) Á; Mague \& Johnson, 1990]. In each case the shorter $\mathrm{Ru}-\mathrm{C}$ distances are found trans to the chloro ligand, with longer Ru-C distances trans to the P atoms. This is consistent with the differing trans influences of Cl and P . The $\mathrm{Ru}-\mathrm{Cl}$ distances $[2.4302$ (6) in $(A), 2.4466(7) \AA$ in $(B)]$ agree quite well with those in the same series of compounds (2.423-2.459, average $2.441 \AA$ Å).

The average $\mathrm{C}-\mathrm{C}$ distances in the phenyl rings are 1.379 (4) in (A) and $1.376(4) \AA$ in (B), with values ranging from 1.351 (5) to 1.393 (4) \AA and from 1.339 (7) to $1.393(5) \AA$ in (A) and (B), respectively. Within the cyclopentadienyl ligands, average $\mathrm{C}-\mathrm{C}$ distances are $1.389(5)$ in (A) and $1.400(4) \mathrm{A}$ in (B), with values ranging from 1.358 (5) to 1.419 (5) \AA in (A) and from 1.390 (4) to 1.413 (4) \AA in (B).

Fig. 1. ORTEPII (Johnson, 1976) diagram of the ruthenium complex in (A). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Fig. 2. ORTEPII (Johnson, 1976) diagram of the ruthenium complex in (B). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Fig. 3. The unit cell for (B) showing the orientation of chloroform solvent molecules.

Experimental

Compounds (A) and (B) were prepared by the evaporation of chloroform/pentane solutions resulting from the photolysis reactions of tetracarbonyl $\left(\eta^{5}\right.$-cyclopentadienyl) ruthenium dimer with bis(diphenylphosphino)methane and bis(diphenylphosphino)ethane, respectively. The density D_{m} of each was measured by flotation in salt solution followed by measurement of the mass of 10.0 ml of the solution.

Compound (A)

Crystal data
$\begin{array}{cl}{\left[\mathrm{RuCl}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)\right] .-} & \text { Mo } K \alpha \text { radiation } \\ \mathrm{CHCl}_{3} & \lambda=0.71073 \AA\end{array}$
$M_{r}=705.44$
Monoclinic
$P 2_{1} / c$
$a=12.3735(4) \AA$
$b=11.4382(4) \AA$
$c=22.0706(11) \AA$
$3=97.480$ (3)
$V=3097.0(2) \AA^{3}$
$Z=4$
$D_{1}=1.513 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
Profile data from $\theta / 2 \theta$ scans
Absorption correction:
ψ scans (MolEN; Fair,
1990)
$T_{\text {min }}=0.980, \quad T_{\text {max }}=$
1.000

10936 measured reflections 7092 independent reflections 5749 observed reflections
$[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.029$
$n \cdot R=0.036$
$S=1.956$
5397 reflections
380 parameters
All parameters refined for H28, other H atoms placed in calculated positions and not refined

Cell parameters from 100 reflections
$\theta=12-15^{\circ}$
$\mu=0.966 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Parallelepiped with well defined faces
$0.40 \times 0.30 \times 0.24 \mathrm{~mm}$
Orange

$$
\begin{aligned}
& R_{\text {int }}=0.014 \\
& \theta_{\text {max }}=27.5^{\circ} \\
& h=-11 \rightarrow 15 \\
& k=-5 \rightarrow 14 \\
& l=-27 \rightarrow 28 \\
& 3 \text { standard reflections } \\
& \text { monitored every } 100 \\
& \text { reflections } \\
& \text { frequency: } 60 \mathrm{~min} \\
& \text { intensity decay: } 2.9 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 / \sigma^{2}(F) \\
& \text { where } \sigma(F)= \\
& \sigma\left(F^{2}\right) / 2 F, \sigma\left(F^{2}\right)=\left[\sigma^{2}(I)\right. \\
& \left.+\left(p F^{2}\right)^{2}\right]^{1 / 2} \text { and } p=0.01 \\
& (\Delta / \sigma)_{\max }=0.01 \\
& \Delta \rho_{\max }=0.635 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.082 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: none } \\
& \text { Atomic scattering factors } \\
& \text { from International Tables } \\
& \text { for X-ray Cristallography } \\
& \text { (1974, Vol. IV. Tables } \\
& \text { 2.2B and 2.3.1) }
\end{aligned}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (A)

$U_{\mathrm{cq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{1} \cdot \mathbf{a}_{j}$.			
r	\cdots	こ	$U_{\text {eq }}$
$0.84808(1)$	-0.13140(2)	(0.39457 (1)	0.038 .58 (4)
0.79535 (5)	-0.17005 (6)	0.49495 (3)	0.0552 (1)
0.70320 (4)	-0.23112 (5)	0.34600 (2)	0.0 .363 (1)
0.70684 (4)	-0.00298 (5)	0.37383 (2)	0.0373 (1)
0.7143 (2)	-0.2841 (2)	0.26910 (9)	0.0428 (5)
0.7801 (2)	-0.3817 (2)	$0.2646(1)$	0.0553 (6)
0.7968 (2)	-0.4246(3)	$0.2080(1)$	0.0699 (8)
0.7488 (3)	-0.3709 (3)	$0.1554(1)$	0.0771 (9)
0.6848 (3)	-0.276.3 (3)	$0.1598(1)$	$0.0800(10)$
(0.6661 (3)	-0.2.324 (2)	$0.2161(1)$	0.0616 (8)
0.6360 (2)	-0.3556(2)	0.3767 (1)	0.0424 (5)
0.5323 (2)	-0.3888 (2)	$0.3516(1)$	$0.0507(6)$
0.4810 (2)	-0.4826 (2)	0.3754 (1)	0.0643 (8)
0.5344 (3)	-0.5446 (3)	0.4233 (1)	0.0781 (9)
0.6376 (3)	-0.5140 (3)	0.4476 (1)	0.0850 (10)
0.6887 (3)	-0.4185 (2)	0.4255 (1)	0.0641 (8)
0.7089 (2)	0.1092 (2)	0.3146 (1)	0.04 .39 (5)
0.6703 (2)	0.2220 (2)	0.3209 (1)	0.0595 (8)
0.6747 (3)	0.3040 (3)	0.2748 (1)	0.0743 (9)
0.7167 (3)	0.2754 (3)	0.2229 (1)	0.0775 (9)

C 17	0.7546 (3)	0.1643 (3)	0.2158 (1)	0.0746 (9)
C 18	0.7513 (2)	0.0812 (2)	0.2613 (1)	0.0569 (6)
C19	0.6507 (2)	0.0744 (2)	0.4345 (1)	0.0431 (5)
C20)	0.7237 (2)	0.1189 (3)	0.4814 (1)	$0.0602(8)$
C21	0.6871 (3)	0.1831 (3)	0.5284 (1)	0.0726 (9)
C22	0.5774 (3)	$0.2002(2)$	0.5282 (1)	0.0676 (8)
C23	0.5038 (2)	0.1546 (2)	0.4827 (1)	$0.0610(6)$
C24	0.5404 (2)	0.0922 (2)	0.4355 (1)	$0.0505(6)$
C25	0.9739 (2)	-0.0411 (3)	0.3537 (1)	0.0765 (9)
C26	0.9612 (2)	-0.1514 (4)	0.3292 (1)	0.0919 (10)
C27	0.9916 (3)	-0.2333 (3)	0.3752 (2)	0.0987 (11)
C28	$1.0212(2)$	-0.1723 (4)	0.4276 (2)	0.0866 (10)
C29	1.0125 (2)	-0.0505 (3)	0.4159 (1)	$0.0690(8)$
C30)	0.6031 (2)	-0.1104 (2)	0.3417 (1)	0.0434 (5)
C31	0.9577 (4)	-0.1484 (3)	0.0992 (2)	0.095 (1)
Cl2 \dagger	1.0772 (2)	-0.1206 (3)	0.0704 (1)	0.173 (1)
C13 \ddagger	0.8677 (3)	-0.0361 (2)	0.0843 (1)	0.153 (1)
Cl 4 §	0.9934 (3)	-0.1729 (3)	0.1741 (1)	0.253 (1)
$\mathrm{Cl2}^{\prime}$ - ${ }^{\text {d }}$	1.0102 (5)	-0.0716 (4)	0.0442 (2)	0.214 (1)
C13 ***	0.8799 (4)	-0.0476 (3)	0.1311 (2)	0.195 (1)
$\mathrm{Cl4}{ }^{\prime} \dagger \dagger$	1.0388 (4)	-0.2139 (4)	0.1509 (3)	0.308 (3)

\dagger Site occupancy 0.639 (3). \ddagger Site occupancy 0.573 (3). § Site occupancy 0.667 (3). I Site occupancy 0.335 (3). ** Site occupancy $0.385(3) . \quad \dagger \dagger$ Site occupancy 0.387 (3).

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (A)
$\mathrm{Ru}-$
$\mathrm{Ru}-$
$\mathrm{Ru}-$
$\mathrm{Ru}-$
$\mathrm{Ru}-$
$\mathrm{Ru}-$
$\mathrm{Ru}-$
Cll
$\mathrm{Cll}-\mathrm{Ru}$
$\mathrm{Pl}-\mathrm{R}$
$\mathrm{Ru}-$
$\mathrm{Ru}-$

Compound (B)

Crystal data

$\left[\mathrm{RuCl}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)\right]$.$\mathrm{CHCl}_{3}$
$M_{r}=719.42$
Monoclinic
$P 2_{1} / c$
$a=15.592$ (4) \AA
$b=10.796$ (2) \AA
$c=19.676$ (6) \AA
$\beta=109.01(1)^{\circ}$
$V=3131(1) \AA^{3}$
$Z=4$
$D_{\mathrm{r}}=1.526 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.515 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4 diffractometer
Profile data from $\theta / 2 \theta$ scans
Absorption correction:
ψ scans (MolEN; Fair, 1990)
$T_{\text {min }}=0.944, \quad T_{\text {max }}=$ 1.000

8480 measured reflections
7185 independent reflections 5636 observed reflections
$[I>3 \sigma(I)]$

$2.4302(6)$	$\mathrm{Ru}-\mathrm{C} 29$	$2.229(3)$
$2.2724(5)$	$\mathrm{P} 1-\mathrm{C} 1$	$1.824(2)$
$2.2833(6)$	$\mathrm{Pl}-\mathrm{C} 7$	$1.823(2)$
$2.161(3)$	$\mathrm{PI}-\mathrm{C} 30$	$1.849(2)$
$2.149(3)$	$\mathrm{P} 2-\mathrm{C} 13$	$1.834(2)$
$2.212(3)$	$\mathrm{P} 2-\mathrm{C} 19$	$1.817(2)$
$2.220(3)$	$\mathrm{P} 2-\mathrm{C} 30$	$1.851(2)$
$92.85(2)$	$\mathrm{Ru}-\mathrm{Pl}-\mathrm{C} 30$	$97.57(7)$
$90.60(2)$	$\mathrm{Ru}-\mathrm{P} 2-\mathrm{Cl} 3$	$120.75(8)$
$72.07(2)$	$\mathrm{Ru}-\mathrm{P} 2-\mathrm{C} 19$	$121.46(7)$
$117.08(8)$	$\mathrm{Ru}-\mathrm{P} 2-\mathrm{C} 30$	$97.14(7)$
$125.92(7)$	$\mathrm{Pl}-\mathrm{C} 30-\mathrm{P} 2$	$92.8(1)$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 100 reflections
$\theta=12-16^{\circ}$
$\mu=0.957 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Parallelepiped with well defined faces $0.50 \times 0.45 \times 0.38 \mathrm{~mm}$ Orange
$R_{\text {int }}=0.009$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {max }}=27.5^{\circ}$
$k=-5 \rightarrow 13$
$l=-25 \rightarrow 23$
3 standard reflections monitored every 100 reflections
frequency: 60 min intensity decay: 7.3\%

Refinement
Refinement on F
$R=0.031$
$w^{\prime} R=0.035$
$S=2.562$
5258 reflections
352 parameters
H -atom parameters not refined
$w=1 / \sigma^{2}(F)$
where $\sigma(F)=$
$\sigma\left(F^{2}\right) / 2 F, \sigma\left(F^{2}\right)=\left[\sigma^{2}(I)\right.$
$\left.+\left(p F^{2}\right)^{2}\right]^{1 / 2}$ and $p=0.01$

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (B)

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
x	y	こ	$U_{\text {ca }}$
0.78207 (1)	0.07158 (2)	0.82429 (1)	0.03713 (5)
0.82931 (5)	0.28483 (6)	0.81371 (4)	0.0543 (3)
0.73868 (4)	0.07735 (6)	0.70250 (3)	0.0382 (1)
0.91250 (4)	-0.01070)(6)	0.81418 (3)	0.0389 (1)
0.6716 (2)	-0.0488 (2)	0.6482 (1)	0.0381 (6)
0.6621 (2)	-0.1606 (3)	0.6792 (1)	0.0471 (8)
0.6119 (2)	-0.2561 (3)	0.6378 (2)	$0.0590(9)$
$0.5709(2)$	-0.2397 (3)	0.5655 (2)	0.0614 (9)
$0.5807(2)$	-0.1309 (3)	0.5335 (2)	0.0594 (9)
0.6306 (2)	-0.0355 (3)	0.5747 (1)	0.0502 (8)
$0.6711(2)$	0.2101 (3)	0.6574 (1)	0.0476 (8)
0.6951 (2)	0.2905 (3)	$0.6128(2)$	0.073 (1)
(0.6380(3)	0.3884 (3)	0.5809 (2)	(0.091 (1)
0.5596 (3)	0.4065 (3)	0.5936 (2)	0.090 (1)
0.5348 (3)	0.3271 (4)	0.6376 (2)	0.00%, 1)
0.5899 (2)	(). 2287 (3)	0.6696 (2)	0.074 (1)
0.9429 (2)	-0.1664 (2)	0.8515 (1)	0.0437 (6)
1.0093 (2)	-0.1848 (3)	0.9173 (2)	0.0590 (9)
1.0286 (2)	-0.3012 (3)	(0.9470) (2)	0.070 (1)
0.9811 (2)	-0.4026 (3)	0.9111 (2)	0.0678 (9)
0.9148 (2)	-0.3861 (3)	0.8461 (2)	0.0650 (9)
0.8960)(2)	-0.2697 (3)	0.8169 (2)	0.0557 (9)
$1.0203(2)$	().0712 (2)	0.8531 (1)	0.04.38 (6)
1.0268 (2)	0.1655 (3)	0.9021 (2)	0.0532 (9)
$1.1084(2)$	0.2273 (3)	0.9327 (2)	0.066 (1)
1.1824 (2)	0.1967 (3)	0.9138 (2)	0.069 (1)
1.1769 (2)	0.1029(3)	0.8657 (2)	0.068 (1)
1.0966 (2)	(0.0391(3)	0.8355 (2)	0.0561 (9)
0.7423 (2)	-0.0814 (3)	0.8790)(2)	0.0614 (9)
0.6641 (2)	-0.0187 (3)	0.8377 (2)	0.0616 (9)
0.6662 (2)	(). 1016 (3)	().8651 (2)	0.0674 (9)
$0.7462(2)$	0.1122 (3)	0.9227 (2)	0.075 (1)
0.7938 (2)	().000) (4)	0.9327 (2)	0.069 (1)
$0.8408(2)$	0.0755 (3)	0.6758 (1)	0.0484 (8)
0.9014 (2)	-0.0278(3)	0.7182 (1)	0.0484 (8)
$0.6769(2)$	0.4695 (3)	$0.8590(2)$	0.077 (1)
0.57701 (7)	0.4138(1)	0.86726 (8)	0.1270 (4)
0.75163 (9)	0.5108(2)	0.94169 (7)	0.1451 (6)
(0.6557(1)	(0.5940(1)	0.80141 (8)	0.1568 (6)

Table 4. Selected geometric parameters $\left(A^{\circ},{ }^{\circ}\right)$ for (B)

$\mathrm{Ru}-\mathrm{Cll}$	$2.4466(7)$	$\mathrm{P} 1-\mathrm{CI}$	$1.833(2)$
$\mathrm{Ru}-\mathrm{Pl}$	$2.2688(7)$	$\mathrm{P} 1-\mathrm{C} 7$	$1.828(3)$
$\mathrm{Ru}-\mathrm{P} 2$	$2.2863(7)$	$\mathrm{P} 1-\mathrm{C} 30$	$1.832(3)$
$\mathrm{Ru}-\mathrm{C} 25$	$2.169(3)$	$\mathrm{P} 2-\mathrm{Cl} 3$	$1.834(3)$
$\mathrm{Ru}-\mathrm{C} 26$	$2.173(3)$	$\mathrm{P} 2-\mathrm{Cl} 9$	$1.832(2)$
$\mathrm{Ru}-\mathrm{C} 27$	$2.227(4)$	$\mathrm{P} 2-\mathrm{C} 31$	$1.849(3)$
$\mathrm{Ru}-\mathrm{C} 28$	$2.226(4)$	$\mathrm{C} 30-\mathrm{C} 31$	$1.52 .3(4)$
$\mathrm{Ru}-\mathrm{C} 29$	$2.217(3)$		

$\mathrm{ClI}-\mathrm{Ru}-\mathrm{PI}$
$\mathrm{Cl} 1-\mathrm{Ru}-\mathrm{P} 2$
P1-Ru-P2
$\mathrm{Ru}-\mathrm{Pl}-\mathrm{Cl}$
$\mathrm{Ru}-\mathrm{PI}-\mathrm{C} 7$
$\mathrm{Ru}-\mathrm{Pl}-\mathrm{C} 30$
83.04 (3) 93.28 (3) 83.48 (2)
120.81 (9)
117.42 (9)
108.3.3(8)
$\mathrm{Ru}-\mathrm{P} 2-\mathrm{Cl} 3$
Ru-P2-C19
$\mathrm{Ru}-\mathrm{P} 2-\mathrm{C} 31$
$\mathrm{P} 1-\mathrm{C} 30-\mathrm{C} 31$
P2-C $31-\mathrm{C} 30$
116.3 (1)
119.82 (9)
109.73 (8)
107.1 (2)
$108.7(2)$

Lists of structure factors. anisotropic displacement parameters, H-atom coordinates, bond distances and angles involving non- H atoms and H 28 for (A), and bond distances and angles involving non-H atoms for (B) have been deposited with the IUCr (Reference: BK1121). Copies may be obtained through The Managing Editor. International Union of Crystallography, 5 Abbey Square. Chester CHI 2HU. England.

References

Ashby, G. S.. Bruce, M. I., Tomkins, I. B. \& Wallis. R. C. (1979). Aust. J. Chem. 32, 1003-1016.
Bruce, M. I.. Wong. F. S.. Skelton, B. W. \& White. A. H. (1981). J. Chem. Soc. Dalton Trans. pp. 1398-1405.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius. Delft. The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent Sustem for Cristal Structure Analysis. Enraf-Nonius. Delft. The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee. USA.
Joslin, F. L.. Mague, J. T. \& Roundhill. D. M. (1991). Organometallics, 10, 521-524.
Klerk-Engels. B. de, Groen, J. H.. Vrieze. K.. Möckel. A.. Lindner, E. \& Goubitz. K. (1992). Inorg. Chim. Acta. 195. 237-243.

Mague. J. T. \& Johnson. M. P. (1990). Organometalics. 9. 1254 1269.

Main, P., Fiske. S. J.. Hull. S. E.. Lessinger. L.. Germain. G.. Declercq. J.-P. \& Woolfson. M. M. (1982). MULTAN1I/82. A System of Computer Programs for the Automatic Solution of Crustal Structures from X-ray Diffraction Data. Universities of York. England. and Louvain. Belgium.
Morandini, F., Consiglio. G.. Straub. B.. Ciani, G. \& Sironi. A. (1983). J. Chem. Soc. Dalton Trans. pp. 2293-2298.

Suravajjala, S. \& Porter, L. C. (1993). Acta Crast. C49. 1456-1458.

Acta Cryst. (1996). C52, 1110-1112

Tricarbonyl $\left(\eta^{5}\right.$-2,4-dimethylpentadienyl)iron Tetrafluoroborate

A. L. Rheingold, ${ }^{\prime *}$ B B. S. Haggerty, ${ }^{\text {a }}$ H. MA ${ }^{b} \dagger$ and R. D. Ernst ${ }^{b *}$
"Department of Chemistry and Biochemistr?; University of Delaware, Newark, DE 19716, USA, and "Department of Chemistry: The Universiṭ of Utah, Salt Lake Ciṭ; UT 84112, USA

(Received I6 May 1994: accepted 23 October 1995)

Abstract

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{11}\right)(\mathrm{CO})_{3}\right] \mathrm{BF}_{4}$, has been found to have the expected piano-stool geometry, except that the unique carbonyl ligand is tilted towards the

[^1]
[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: TA1049). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: \dagger Present address: Department of Chemistry. Northwestern University. Xian (Shaanxi) 710069 . People's Republic of China.

